41 research outputs found

    Streamlined constraint reasoning : an automated approach from high level constraint specifications

    Get PDF
    Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial (optimisation) problems. Solving a problem proceeds in two distinct phases: modelling and solving. Effective modelling has a huge impact on the performance of the solving process. Even with the advance of modern automated modelling tools, search spaces involved can be so vast that problems can still be difficult to solve. To further constrain the model a more aggressive step that can be taken is the addition of streamliner constraints, which are not guaranteed to be sound but are designed to focus effort on a highly restricted but promising portion of the search space. Previously, producing effective streamlined models was a manual, difficult and time-consuming task. This thesis presents a completely automated process to the generation, search and selection of streamliner portfolios to produce a substantial reduction in search effort across a diverse range of problems. First, we propose a method for the generation and evaluation of streamliner conjectures automatically from the type structure present in an Essence specification. Second, the possible streamliner combinations are structured into a lattice and a multi-objective search method for searching the lattice of combinations and building a portfolio of streamliner combinations is defined. Third, the problem of "Streamliner Selection" is introduced which deals with selecting from the portfolio an effective streamliner for an unseen instance. The work is evaluated by presenting two sets of experiments on a variety of problem classes. Lastly, we explore the effect of model selection in the context of streamlined specifications and discuss the process of streamlining for Constrained Optimization Problems."This work was supported by: EPSRC funding award EP/N509759/1" -- Fundin

    Towards portfolios of streamlined constraint models : a case study with the balanced academic curriculum problem

    Get PDF
    Funding: This work is supported by EPSRC grant EP/P015638/1 and used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1). Nguyen Dang is a Leverhulme Early Career Fellow.Augmenting a base constraint model with additional constraints can strengthen the inferences made by a solver and therefore reduce search effort. We focus on the automatic addition of streamliner constraints, derived from the types present in an abstract Essence specification of a problem class of interest, which trade completeness for potentially very significant reduction in search. The refinement of streamlined Essence specifications into constraint models suitable for input to constraint solvers gives rise to a large number of modelling choices in addition to those required for the base Essence specification. Previous automated streamlining approaches have been limited in evaluating only a single default model for each streamlined specification. In this paper we explore the effect of model selection in the context of streamlined specifications. We propose a new best-first search method that generates a portfolio of Pareto Optimal streamliner-model combinations by evaluating for each streamliner a portfolio of models to search and explore the variability in performance and find the optimal model. Various forms of racing are utilised to constrain the computational cost of training.Publisher PD

    Automated streamliner portfolios for constraint satisfaction problems

    Get PDF
    Funding: This work is supported by the EPSRC grants EP/P015638/1 and EP/P026842/1, and Nguyen Dang is a Leverhulme Early Career Fellow. We used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial problems. Solving a problem proceeds in two distinct phases: modelling and solving. Effective modelling has a huge impact on the performance of the solving process. Even with the advance of modern automated modelling tools, search spaces involved can be so vast that problems can still be difficult to solve. To further constrain the model, a more aggressive step that can be taken is the addition of streamliner constraints, which are not guaranteed to be sound but are designed to focus effort on a highly restricted but promising portion of the search space. Previously, producing effective streamlined models was a manual, difficult and time-consuming task. This paper presents a completely automated process to the generation, search and selection of streamliner portfolios to produce a substantial reduction in search effort across a diverse range of problems. The results demonstrate a marked improvement in performance for both Chuffed, a CP solver with clause learning, and lingeling, a modern SAT solver.Publisher PDFPeer reviewe

    Automatically improving SAT encoding of constraint problems through common subexpression elimination in Savile Row

    Get PDF
    The formulation of a Propositional Satisfiability (SAT) problem instance is vital to efficient solving. This has motivated research on preprocessing, and inprocessing techniques where reformulation of a SAT instance is interleaved with solving. Preprocessing and inprocessing are highly effective in extending the reach of SAT solvers, however they necessarily operate on the lowest level representation of the problem, the raw SAT clauses, where higher-level patterns are difficult and/or costly to identify. Our approach is different: rather than reformulate the SAT representation directly, we apply automated reformulations to a higher level representation (a constraint model) of the original problem. Common Subexpression Elimination (CSE) is a family of techniques to improve automatically the formulation of constraint satisfaction problems, which are often highly beneficial when using a conventional constraint solver. In this work we demonstrate that CSE has similar benefits when the reformulated constraint model is encoded to SAT and solved using a state-of-the-art SAT solver. In some cases we observe speed improvements of over 100 times

    Automatic generation and selection of streamlined constraint models via Monte Carlo search on a model lattice

    Get PDF
    Funding: EPSRC EP/P015638/1.Streamlined constraint reasoning is the addition of uninferred constraints to a constraint model to reduce the search space, while retaining at least one solution. Previously it has been established that it is possible to generate streamliners automatically from abstract constraint specifications in Essence and that effective combinations of streamliners can allow instances of much larger scale to be solved. A shortcoming of the previous approach was the crude exploration of the power set of all combinations using depth and breadth first search. We present a new approach based on Monte Carlo search over the lattice of streamlined models, which efficiently identifies effective streamliner combinations.Postprin

    Automatic streamlining for constrained optimisation

    Get PDF
    Funding: UK EPSRC grant EP/P015638/1.Augmenting a base constraint model with additional constraints can strengthen the inferences made by a solver and therefore reduce search effort. We focus on the automatic addition of streamliner constraints, which trade completeness for potentially very significant reduction in search. Recently an automated approach has been proposed, which produces streamliners via a set of streamliner generation rules. This existing automated approach to streamliner generation has two key limitations. First, it outputs a single streamlined model. Second, the approach is limited to satisfaction problems. We remove both limitations by providing a method to produce automatically a portfolio of streamliners, each representing a different balance between three criteria: how aggressively the search space is reduced, the proportion of training instances for which the streamliner admitted at least one solution, and the average reduction in quality of the objective value versus the unstreamlined model. In support of our new method, we present an automated approach to training and test instance generation, and provide several approaches to the selection and application of the streamliners from the portfolio. Empirical results demonstrate drastic improvements both to the time required to find good solutions early and to prove optimality on three problem classes.Postprin

    Automatically improving constraint models in Savile Row

    Get PDF
    When solving a combinatorial problem using Constraint Programming (CP) or Satisfiability (SAT), modelling and formulation are vital and difficult tasks. Even an expert human may explore many alternatives in modelling a single problem. We make a number of contributions in the automated modelling and reformulation of constraint models. We study a range of automated reformulation techniques, finding combinations of techniques which perform particularly well together. We introduce and describe in detail a new algorithm, X-CSE, to perform Associative-Commutative Common Subexpression Elimination (AC-CSE) in constraint problems, significantly improving existing CSE techniques for associative and commutative operators such as +. We demonstrate that these reformulation techniques can be integrated in a single automated constraint modelling tool, called Savile Row, whose architecture we describe. We use Savile Row as an experimental testbed to evaluate each reformulation on a set of 50 problem classes, with 596 instances in total. Our recommended reformulations are well worthwhile even including overheads, especially on harder instances where solver time dominates. With a SAT solver we observed a geometric mean of 2.15 times speedup compared to a straightforward tailored model without recommended reformulations. Using a CP solver, we obtained a geometric mean of 5.96 times speedup for instances taking over 10 seconds to solve

    Genetic Risk Score for Essential Hypertension and Risk of Preeclampsia

    Get PDF
    Preeclampsia is a hypertensive complication of pregnancy characterized by novel onset of hypertension after 20 weeks gestation, accompanied by proteinuria. Epidemiological evidence suggests that genetic susceptibility exists for preeclampsia; however, whether preeclampsia is the result of underlying genetic risk for essential hypertension has yet to be investigated. Based on the hypertensive state that is characteristic of preeclampsia, we aimed to determine if established genetic risk scores (GRSs) for hypertension and blood pressure are associated with preeclampsia

    A framework for constraint based local search using ESSENCE

    Get PDF
    Structured Neighbourhood Search (SNS) is a framework for constraint-based local search for problems expressed in the Essence abstract constraint specification language. The local search explores a structured neighbourhood, where each state in the neighbourhood preserves a high level structural feature of the problem. SNS derives highly structured problem-specific neighbourhoods automatically and directly from the features of the ESSENCE specification of the problem. Hence, neighbourhoods can represent important structural features of the problem, such as partitions of sets, even if that structure is obscured in the low-level input format required by a constraint solver. SNS expresses each neighbourhood as a constrained optimisation problem, which is solved with a constraint solver. We have implemented SNS, together with automatic generation of neighbourhoods for high level structures, and report high quality results for several optimisation problems

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
    corecore